Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
SN Appl Sci ; 4(10): 257, 2022.
Article in English | MEDLINE | ID: covidwho-2007347

ABSTRACT

Abstract: This article presents the design and fabrication of an air purifier that uses a water-based technique to clean indoor/outdoor transitional air to provide a low-tech air purifier against the annual smog crisis and the ongoing COVID-19 pandemic. The air purifier was designed and built. All tests were conducted in a closed room as well as a semi-outdoor area. Particle sizes of PM0.3, 0.5, 1.0, 3.0, 5.0, and 10 µm (particle/m3) were measured at an air inlet, air outlet, 2 m from an air inlet, and 4 m from an air outlet after 0, 5, 10, 15, and 20 min of air treatment, respectively, as well as CO2 levels and relative humidity (RH). The average airflow rate was also measured. When compare to 0 min, all parameters, except semi-outdoor PM0.3 and CO2 levels, tend to decrease in both indoor and semi-outdoor conditions. When measure by total airflow specification of a dual ventilation fan, the average airflow rate at an air outlet is reduced by 20 times. Article Highlights: Design and fabrication of a water-based air purifier.A low-tech air purifier helping to protect against the annual smog crisis and the ongoing COVID-19 pandemic.The novel water-based air purifier effectively traps air particles ranging in size from 0.5 to 10 µm.

2.
Energy (Oxf) ; 261: 125322, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2004053

ABSTRACT

In this paper, optimal allocation and planning of wind and photovoltaic energy resources are performed in a distribution network with the objective of reducing losses, improving reliability, and minimizing energy generation cost in terms of changes in load consumption pattern during the COVID-19 pandemic condition. The main goal is identifying the best operating point, ie the optimal location and size of clean energy resources in the worst load change conditions, which ensures the best network operation in all conditions during the COVID-19 condition via the turbulent flow of water-based optimization (TFWO). First, the deterministic approach is implemented in Hybrid and Distributed cases before and during COVID-19 conditions. The probabilistic approach is performed considering generation uncertainty during the COVID-19 conditions. The results showed better performance in the Distributed case with the lowest losses and higher reliability improvement. Moreover, the losses are significantly reduced and the reliability is improved during the COVID-19 pandemic conditions. The findings indicate that the allocation and planning during the COVID-19 conditions is a robust option in network operating point changes. Also, the probabilistic results showed that considering the uncertainty has increased active and reactive losses (4.67% and 5.82%) and weakened the reliability (10.26%) of the deterministic approach.

3.
21st Mediterranean Microwave Symposium, MMS 2021 ; 2022-May, 2022.
Article in English | Scopus | ID: covidwho-1985490

ABSTRACT

In this work, we present a UHF-RFID-based noninvasive sensor to measure the concentration of ethanol in water using the volume fraction of liquids in mixture solutions. The sensing system operates at the UHF band (860-928 MHz). The concentration of ethanol in water affects the dielectric properties of the solution and therefore the antenna sensitivity of the RFID tag. This sensor operates by measuring the change in permittivity of a solution because of the change in concentration of ethanol in water. We propose a flexible RFID-Tag sensor a low-cost alternative to identify the possible sensitivity of tag changes and is able to detect a variation of 25% in ethanol in 9 ml of deionized water (DI-Water). The solution is useful in avoiding counterfeit ethanol solutions that may be toxic. The experimental setup is inexpensive, portable, quick, and contactless. We present results for ethanol solutions ranging from 25% to 100% in a small tube container. © 2022 IEEE.

4.
Animals (Basel) ; 12(8)2022 Apr 16.
Article in English | MEDLINE | ID: covidwho-1792854

ABSTRACT

The threat of foreign animal disease introduction through contaminated animal products, feed ingredients, and wildlife vectors have highlighted the need for additional approved methods for mass depopulation of swine under emergency scenarios, especially methods that can be applied to pigs across all production phases. The market disruption within the swine industry due to the SARS-CoV-2 pandemic has demonstrated this lack of preparation. The objective of this study was to validate water-based foam as a mass depopulation method for suckling (18 to 24 days of age) and finisher stage (63 to 100 days of age) pigs. Finisher pigs (n = 31, originally 32 but one finisher pig died prior to foaming), allocated as 9 triads and 1 set of 4 pigs, in 10 total replicates, and suckling pigs (n = 32), randomly allocated to two replicates, were completely covered in water-based medium-expansion foam for a 15-min dwell time in a bulk container. Container fill time for the trials were 6.5 ± 0.68 s and 5.3 ± 0.03 s for finisher and suckling pig replicates, respectively. Average (± SD) time for cessation of movement was 105 ± 39.1 s (s) for finisher pigs and 79.5 ± 10.5 s for suckling pigs. After completion of the 15-min dwell time in the foam, all pigs were confirmed dead upon removal from the container. The results from the present study suggest that the use of water-based foam can be an effective means of mass depopulation for suckling and finisher stage pigs, supporting previous research on the application to adult swine.

5.
13th International Conference on Nanomaterials - Research and Application, NANOCON 2021 ; : 351-358, 2021.
Article in English | Scopus | ID: covidwho-1786621

ABSTRACT

Packaging plays important part of the visual communication and in consumer’s choice of purchasing goods. To enhance visual appearance, packaging material is often coated. Beside enhancement of visual appearance, additional coating often improves other packaging properties. The COVID-19 pandemic stressed the importance of the antimicrobial properties of goods that encounter consumers. During purchasing, consumer first meets the packaging making it significant in the consumer’s protection. The aim of this research is to determine antimicrobial properties of nanocomposite coating which includes nanosized TiO2. For the purpose of the research a set of offset cardboard prints was coated with nanocomposite coating composed of water-based varnish (WD) and nanoscale TiO2 particles. The prepared samples were characterized by determining CIE L*a*b* coordinates of primary colours (CMYK), detecting colour fading after the accelerated ageing process by density measurements and by determining inhibition of microorganisms’ growth by using smear test. The change in chroma affected by UV radiation (accelerated ageing) is most visible on yellow samples while both, cyan and magenta proved to be more resistant to UV radiation. UV radiation did not cause significant change on the L* coordinate of black, although its values were affected with initial varnishing as TiO2 is also used as a white pigment. Although increase of the TiO2 concentration in nanocomposite causes increase of the colour change, only the one with the highest concentration (2%) proved to be unacceptable. On the other hand, as the beneficial effects of nanocomposites increase with increase of the TiO2 concentration, the nanocomposite with 1% of TiO2 should be the choice. © 2021 NANOCON Conference Proceedings - International Conference on Nanomaterials. All rights reserved.

6.
J Pet Explor Prod Technol ; 11(1): 233-242, 2021.
Article in English | MEDLINE | ID: covidwho-968509

ABSTRACT

In less than a decade, there have been two global meltdowns of crude oil price and the latest was caused by the spread of coronavirus disease (COVID-19) in 2020. This is expected to have a negative impact on the global economy, especially on those countries that depend more on the revenue from sales of crude oil. One of the measures that can be taken to survive this kind of situation in the future is to reduce the unit technical cost for producing a barrel of oil by using locally available materials. This research investigated a local clay sourced from Ropp in Plateau State, Nigeria, by considering its rheological characteristics and economic implications of using it for partial to total substitution of imported bentonite clay for oil and gas drilling operations. The local clay was termed as Ropp bentonite clay (RBC). Various spud mud samples were prepared by dispersing a mixture of imported bentonite clay (IBC) and RBC (0-100%) in 350 ml of water. Certain quantity (0-1 g) of polyacrylamide cellulose was added to the mud samples before rheological and physical properties were determined using the standard API procedure. An economic model was built to determine the cost implications of using any of the mud formulations at different consumption rates. The results show that IBC-RBC blend in the right proportion could save Nigeria 12 to 36% of the cost of bentonite clay used to drill wells in the country.

SELECTION OF CITATIONS
SEARCH DETAIL